Geotechnical Investigation Report for Design and Construction of Proposed ACECOR Building at University of Cape Coast

Prepared for: FAS Consult Limited

> Prepared by: E. N. Bonne Acquah P. O. Box KA 9709 Airport - Accra

February, 2021

TABLE OF CONTENTS

	CON	TENT	PA	GE
1.0	INTF	RODUCTION		1
2.0	SITE	DESCRIPTION		2
	2.1	The Site		2
	2.2	Climate		3
	2.3	Geology of the Area		3
	2.4	Seismic Considerations		4
3.0	THE	INVESTIGATION		5
	3.1	Field Work		5
	3.2	Borehole Drilling		5
	3.3	Dynamic Cone Penetrometer Test		5
	3.4	Laboratory Test		7
	3.5	Soil Profile and Soil Properties		7
	3.6	Estimation of Bearing Capacity of C	Ground Medium	11
	3.7	Foundations		16
4.0	DISCI	LAIMER		17
	Refere	ence		18
	Apper	ndices		

1.0 INTRODUCTION

A geotechnical investigation has been conducted on a parcel of land at the University of Cape Coast. The geotechnical investigation forms part of engineering studies for the design and construction of the ACECOR Building.

The objective of the investigation was to obtain information about the geological conditions at the site and assess the subsurface soil conditions so as to determine the soil parameters and soil bearing capacity to be considered for the design and construction of the foundations.

The subsurface conditions revealed by the investigation are discussed in this report. The report discusses the activities carried out as part of the investigations, presents the results and makes recommendations for the design of the foundations.

2.0 SITE DESCRIPTION

2.1 The Site

The location of the site is shown in Figure 1.

2.2 Climate

The Cape Coast area lies within the zone of heavy seasonal rainfall. The area generally experiences two main rainy seasons. The seasons are however not distinct. There is a major rainy season that reaches its peak in May-June and a minor season between September and November. The average annual rainfall is about 1250mm. The degree of saturation of surface soils is very high in May–June, i.e during the peak of the first rainy season. The period between January to April is relatively dry and maximum desiccation of surface soils takes place.

2.3 Geology of the Area

The area of the site is underlain by rocks of the Sekondian formation which consists of sandstones, grits, shales and mudstones, nodules of limestone and siderite. The superficial soils are silty sands and clays. (Ref. 1)

2.4 Seismic Considerations

Ghana cannot be considered as a major earthquake prone area of the world. The coastal areas are however subjected to earthquakes of relatively low intensities.

A detailed seismic hazard assessment study is yet to be conducted for Ghana. A Global Seismic Hazard Assessment study conducted on a macro-scale hazard for the African region provided the Southern Ghana region with a rock peak ground acceleration of 0.16g for an annual exceedance probability (AEP) of 10% in 50 years.

Based on records of the seismic hazard, the geologic setting of Southern Ghana and ground motion estimates from other similar locations in the world with similar seismo- tectonic features, a deep rock PGA (i.e., zero-period spectral acceleration) with an annual exceedance probabilities of 10% in 50 years of 0.15 - 0.2g could be assumed for the area.

The project area is located within zone 3 of the seismic risk map of Ghana as shown in Figure 2. Definition for the Seismic Zones is shown in Table 1. It is recommended that engineering structures in zone 3 should be analysed with an assigned horizontal ground acceleration of 0.35g.

(Ref. 2). The recommended ground acceleration of 0.35g represents the average for the range 0.14- 0.57g. A deep rock PGA of 0.2g is recommended to be used for design.

Figure 2. Seismic Risk Map of Ghana

Fable 1. Definition	of Seismic Zones
---------------------	------------------

Seismic Zone	Assigned Horizontal Design Ground Acceleration: g
0	0
1	0.15
2	0.25
3	0.35

3.0 THE INVESTIGATION

The investigation included fieldwork and laboratory testing.

3.1 Field Work

The field work consisted of Dynamic Cone Penetrometer (DCP) Test and drilling boreholes. The field work was started on 15th February 2021 and completed on 20th February 2021.

3.2 Borehole drilling

Three (3) boreholes were drilled to establish the soil profile. The borehole drilling was conducted in accordance with BS 5930 – Site Investigations for Civil Engineering Projects.

The boreholes were drilled to a maximum depth of 9m using the FLYDISC DRILLING RIG XUL - 100 drilling equipment. Bulk disturbed samples of the soils were recovered, preserved in airtight containers and labelled as the holes were advanced.

3.3 Dynamic Cone Penetrometer Test

The in-situ strength (Bearing Capacity) of the ground medium was tested using a Dynamic Cone Penetrometer (DCP). The equipment has the following characteristics:

Weight of hammer	10kg
Weight of anvil	6kg
Height of fall of hammer	50.0cm
Cone Diameter	2.4cm
Cone Surface Area	5cm^2
Apex Angle of Cone	60°

This equipment also has a slotted open drive sampler capable of retrieving samples of the formation being penetrated.

Five (5) DCP tests were performed across the proposed area for the building. Additional five (5) DCP tests were performed across the area for future development. The test were done at the points as shown in Figure 3. The DCP tests were done to estimate the variation of the bearing capacity of the ground medium with depth. The number of blows required for the cone to penetrate 10cm into the ground medium was noted for various depths. The test was terminated when the number of blows required for the cone to penetrate 10cm exceeded 50 or when there was an obvious 'refusal' as indicated by a rebounding of the hammer when dropped on the anvil.

Figure 3. Location of Test Points

3.4 Laboratory Tests

The following standard engineering tests shall be performed on the soil samples retrieved from the boreholes:

- Moisture Content
- Particle Size Distribution (by Wet Sieving)
- Atterberg Limits

The tests were done in accordance with the following test methods/standard.

BS1377: Methods of Test for Soils for Civil Engineering Purposes. ASTM D2217/GHA S7 - Sieve Analysis of Granular Soils, ASTM D4318/GHA S6 - Determination of Atterberg Limits of Soil Fines.

Differential Free Swell (DFS) Test was also carried out on samples of the soils. The DFS test consists of the following process. Two samples of the dried soil passing the 0.425mm sieve and weighing 10g each were taken. One sample was put in a 50cc graduated glass cylinder containing distilled water and the other containing kerosene. Both samples were left for at least 24 hours and their volumes noted.

The DFS is expressed as:

<u>Volume of soil in water – Volume of soil in kerosene</u> X 100 % Volume of soil in kerosene

The DFS values were used to assess the compressibility of the soils.

3.5 Soil Profile and Soil Properties

The test pit revealed that the site has a soil profile of loose brown clayey SAND topsoil lying over loose to medium dense yellowish brown gravelly clayey SAND to a depth of about 6m The soil gradually changed into dense to very dense mottled yellow/reddish brown decomposed/weathered SANDSTONE.

The soil profile and the properties of the soil obtained from the laboratory tests are shown in Appendix A.

Water was encountered in all the boreholes. The water was encountered at depth between 1.2 - 1.8m. The water levels stabilised at 1.0 after 24 hours.

The laboratory test results on the soil samples are summarised in Table 2.

Sample Identification		Grading			Atterberg Limits			Swell Potential
	Moisture Content (%)	Gravel Content (%)	Sand Content (%)	Silt/Clay Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plastic Index (%)	DFS (%)
BH1 ds1 0.2 – 1.3m	4.5	3	70	27	13	10	3	0
BH1 ds2 1.3 – 3.4m	14.9	0	56	44	34	11	23	12
BH1 ds3 3.4 – 3.8m	16.2	57	25	18	38	12	26	18
BH1 ds4 3.8 - 6.3m	22.6	0	40	60	40	16	24	37
BH1 ds5 6.3 – 8.8m	16.7	0	69	31	29	17	12	0
BH2 ds1 0.4 – 2.1m	17.2	3	37	60	18	8	10	36
BH2 ds2 2.1 – 5.5m	17.8	0	62	38	35	12	23	36
BH2 ds3 5.5 - 8.7m	17.7	0	72	28	29	18	11	0
BH3 ds1 0 - 1.6m	12.0	1	62	37		Non-Plastic		0
BH3 ds2 1.6 - 6.6m	17.0	0	55	45	41	12	29	24
BH3 ds3 6.6 – 9.0m	15.3	0	73	27	24	18	6	36

Table 2: Summary of Laboratory Test Results for Borehole Soil Samples

The liquid limits and the plasticity indexes of the clayey SAND upper soil layers fall within Zone 4 of the Plasticity Chart (Figure 4). The highly decomposed/weathered SANSTONE fall within Zone 2 of the Plasticity Chart. The results indicate that the clayey SAND has medium plasticity and the weathered SANDSTONE has low plasticity.

Figure 4. Casagrande Plasticity Chart.

Peck, Hansen and Thorburn (1974) related the plasticity index to the swelling potential of soils in a simple relation shown in Table 3. (Ref. 3)

Swelling Potential	Plasticity Index (%)
Low	0-10
Medium	10-20
High	20-35
Very high	35 and above

Table 3. Relationship between Plasticity Index and swelling potential

The degree of expansiveness of soils and the possible damage to light loaded structures may be quantitatively assessed from Table 4.

Table 4. Relationship between Differential Free Swell and Degree of Expansiveness

Differential Free Swell (%)	Degree of Expansiveness
Less than 20	Low
20-35	Moderate
35-50	High
Greater than 50	Very High

The clayey SAND has moderate to high potential to undergo volume change with variation in soil moisture. When the moisture within the clayey SAND vary between the dry and wet seasons, it is likely to cause alternate shrinkage and swelling of the soil. This could result in differential ground movement if the moisture distribution is not uniform.

The decomposed/highly weathered SANDSTONE has no potential to undergo volume change with variation in soil moisture.

A sample of the water collected from borehole 3 was tested to determine pH value, Sulphate Content and Chloride ion concentration in order to establish whether there is considerable amount of salts in the soil that may be aggressive to buried concrete and steel. The results of the chemical test on the water sample are presented in Table 5 and in Appendix B.

Borehole No.	РН	CI (mg/I)	SO4 (mg/l)
3	5.1	8730	928
Limits	6.85	400	300

 Table 5: Chemical Test Results on Water Samples

The levels of chlorides and sulphate in the water are higher than the prescribed limits of BRE Digest Standard of maximum 400mg/l and 300mg/l respectively. The buried concrete and reinforcement steel are highly susceptible to attack by the salts. The use of admixtures that will counteract the adverse effects of the salts, during production of concrete for the substructure is recommended. A dense concrete mix is therefore recommended for construction of the structures.

The site is close to the Gulf of Guinea and the air is likely to be saline and aggressive. Reinforcement steel should not be exposed to the environment for long periods.

3.6 Estimation of Bearing Capacity of Ground Medium

The strength characteristics of the overburden granular soils may be evaluated by converting the unit resistance of the ground into either allowable bearing capacity or standard penetration (N) blow- counts.

The dynamic cone penetration r, defined as the number of blows required for advancing the cone by 10cm may be converted into unit resistance R_D of the ground in kN/m^2 or kPa using the formula

$$R_D = \frac{m^2 H}{Ae(m+P)}$$

Where 'e' is the penetration per blow in cm (i.e e=10/r)

Using the above parameters for the dynamic cone penetrometer used, it can be shown that

$$R_D = \frac{6250}{e} \left(kN \,/\, m^2 \right)$$

Substituting 10/r for 'e'

$$R_{\rm D} = 625r$$

For shallow foundations, the ultimate bearing capacity q_{ult} may be obtained from the unit R_D by the following relationship (Ref. 4)

$$q_{ult} = \frac{R_D}{20} \left(kN / m^2 \right)$$

The ultimate bearing capacity may be obtained from the approximate relationship:

$$q_{ult} = 30 r (kN/m^2)$$

The ultimate bearing capacity (q_{ult}) is the estimated load limit at which failure is expected to occur. This value is lowered by a safety factor to arrive at the allowable bearing capacity (q_{all}) to be used for the design of the foundations. The choice of safety factor should be based on the

extent of subsurface investigation, reliability of the estimated loads, importance of the structure and consequences of failure. The choice of safety factor should be based on the extent of subsurface investigation, reliability of the estimated loads, importance of the structure and consequences of failure. The designer may consider a safety factor in the range 2.0 to 4.0. A safety factor of 3.0 has been applied to the minimum ultimate bearing capacity values. The estimated bearing capacities are presented in Tables 6 and 7 for the area for the proposed building and the area for future development respectively. Variation of the bearing capacities with depth has been presented in the Graphs in Figure 6 and 7. The depths has not been referenced to a specific datum.

Depth	Ultimate Bearing Capacity quit						q _{all}
(m)	(kN/m ²)						(kN/m^2)
	Test 1	Test 2	Test 3	Test 4	Test 5	Minimum	
0.10	30	30	150	90	60	30	10
0.20	120	60	300	120	120	60	20
0.30	120	120	360	120	180	120	40
0.40	120	90	330	120	180	90	30
0.50	60	120	330	90	120	60	20
0.60	60	90	270	60	60	60	20
0.70	90	120	270	60	90	60	20
0.80	60	120	180	90	60	60	20
0.90	60	60	180	60	60	60	20
1.00	90	90	150	30	90	30	10
1.10	90	120	180	60	90	60	20
1.20	60	90	240	60	90	60	20
1.30	90	150	240	240	120	90	30
1.40	90	120	300	240	120	90	30
1.50	90	120	300	180	120	90	30
1.60	90	120	210	120	150	90	30
1.70	90	120	180	120	90	90	30
1.80	150	150	210	90	120	90	30
1.90	120	150	210	120	120	120	40
2.00	150	180	240	90	120	90	30
2.10	180	390	360	180	240	180	60
2.20	150	450	360	150	270	150	50
2.30	240	450	360	240	330	240	80
2.40	180	480	420	330	270	180	60
2.50	300	540	540	330	330	300	100
2.60	420	570	600	300	360	300	100
2.70	360	630	510	330	510	330	110
2.80	420	810	600	450	450	420	140
2.90	420	900	660	450	510	420	140
3.00	570	1200	690	450	450	450	150
3.10	540	1110	690	420	540	420	140
3.20	540	1200	750	660	540	540	180
3.30	750	1260	750	900	600	600	200
3.40	900	1350	1350	900	690	690	230
3.50	990	1380	1470	780	870	780	260
3.60	1020	1500	1290	900	960	900	300
3.70	1320		1290	990	1260	990	330
3.80	1410		1440	1290	1470	1290	430
3.90	1440		1380	1350	1500	1350	450
4.00	1500		1500	1500		1500	500

Table 6. Bearing Capacity for Proposed Building Area

Depth	Ultimate Bearing Capacity qult						q _{all}
(m)	(kN/m ²)						(kN/m^2)
	Test 1	Test 2	Test 3	Test 4	Test 5	Minimum	
0.10	60	30	90	30	30	30	10
0.20	30	30	60	60	30	30	10
0.30	60	30	60	90	30	30	10
0.40	180	120	60	90	30	30	10
0.50	240	120	120	120	60	60	20
0.60	180	210	180	240	60	60	20
0.70	120	180	150	240	60	60	20
0.80	90	240	150	270	120	90	30
0.90	120	300	150	270	180	120	40
1.00	150	270	90	240	150	90	30
1.10	90	270	60	390	270	60	20
1.20	90	270	90	180	270	90	30
1.30	90	210	150	180	300	90	30
1.40	120	210	210	210	390	120	40
1.50	150	210	240	210	420	150	50
1.60	120	270	330	210	450	120	40
1.70	120	270	390	240	510	120	40
1.80	180	210	390	180	450	180	60
1.90	180	240	390	300	480	180	60
2.00	180	240	330	300	510	180	60
2.10	300	210	420	450	480	210	70
2.20	360	240	390	450	450	240	80
2.30	450	360	360	510	300	300	100
2.40	540	420	420	690	300	300	100
2.50	600	660	510	750	420	420	140
2.60	600	660	750	900	630	600	200
2.70	600	750	780	1200	630	600	200
2.80	660	1050	750	1320	750	660	220
2.90	720	1050	750	870	720	720	240
3.00	690	1050	780	1020	720	690	230
3.10	810	1140	690	1050	600	600	200
3.20	750	1350	750	1080	840	750	250
3.30	900	1350	750	1050	900	750	250
3.40	990	1440	900	1140	990	900	300
3.50	990	1440	900	1320	960	900	300
3.60	960	1260	900	1380	900	900	300
3.70	960	1260	840	1380	840	840	280
3.80	990	1410	840	1470	900	840	280
3.90	1050	1350	840	1500	1020	840	280
4.00	1170	1470	1050		1080	1050	350
4.10	1260	1500	1140		1200	1140	380
4.20	1440		1320		1440	1320	440
4.30	1500		1470		1500	1470	490
4.40			1500			1500	500

Table 7. Bearing Capacity for Area for Future Development

3.7 Foundations

The nature of the sub-soils is such that shallow foundations could be considered for the proposed structures. Pad or spread footings placed at a minimum depth of 2.5m may be considered. A bearing capacity of 100kN/m² may be adopted for the design.

Due to the moderate to high potential to undergo volume change with variation in soil moisture, it is advised that the columns should be tied with ground beams to limit the adverse effect of any uneven ground movement that may occur.

Adoption of the low bearing capacity of 100kN/m² will require very wide footings. A raft foundation or strip foundation designed as inverted T-beams may be considered as other options. A modulus of sub-grade reaction of 1.2×10^4 kN/m³ is recommended for design of the raft foundation and strip foundation.

Alternatively, it is advised that short bored piles or caissons should be constructed to transmit the loads to the firm strata at depths greater than 4.0m. An end bearing capacity of 500kN/m² may be considered for the caissons. The caps for the caissons should be tied with beams.

Due to the presence of water at a shallow depth of 1.0m, it would be expedient for a pump to be provided at the site during excavation.

The soils are likely to cave in during open excavation and hinder the construction of the substructure. Measures should be taken to minimize the effect of the collapsing sides of the excavation on the works.

4.0 DISCLAIMER

The designer has the final choice of type of foundation to adopt and how deep to place the foundations after considering all factors that are likely to affect the building during the service life.

These findings are based on the conditions as revealed by the investigation. There may however be some special conditions at the site, though unlikely, which may not have been discovered through the investigation. Any special conditions observed during construction may be brought to our notice for redress.

E. N Bonne Acquah (7/3/2021)

REFERENCES:

(1) Geological Survey Dept.	Geological map of Ghana with mineral deposits. 1988.
(2) BRRI	The Seismic Design of Reinforced Concrete Structures. 2012
(3) Gopal Ranjan and Rao. A.S.R	Basic and Applied Soil Mechanics
(4) Sanglerat, G	The Penetrometer and Soil Exploration. 2 nd Edition 1972

APPENDIX A – BOREHOLE LOGS

GEOTECHNICAL INVESTIGATION FOR ACECOR BUILDING PROJECT AT UNVERSITY OF CAPE CC CLIENT: FAS CONSULT LIMITED BORING METHOD: PERCUSSION BORING NET HOD: PERCUSSION BORING NET HOD: PERCUSSION BORING NET HOD: PERCUSSION Soli//Rock Description Soli//Rock Description (i) (i) (i) (i) (i) Optimized Soli//Rock Description (i) Optimized Soli//Rock Description (i) (i) (i) (i) (i) <th colspan<="" th=""><th>2021 21 (%) s</th></th>	<th>2021 21 (%) s</th>	2021 21 (%) s
Second LT LIMITED Image: Construct The construction of the construline of the construction of the construction of the co	2021 21 (%) s	
BORING METHOD: PERCUSSION Lolid Jameter: 150mm Lolid Jameter: 150mm START DATE: 15th February. Borehole No: 11 (Page 1 of 2) Latitude 5.10227, Longitude -1.28471 END DATE: 16th February. 20 Depth Sample Soli/Rock Description PT Test Roter Jone Jone Jone Jone Jone Jone Jone Jone	2021 21 (%) s	
Hole Diameter: 150mm START DATE: 15th February, 20 Borehole No.: 1 (Page 1 of 2) Latitude 5.10227, Longitude -1.28471 END DATE: 15th February, 20 Depth Sample Soll/Rock Description SPT Test Rotary Core drilling Consistency Grading Image: No.: 1 (Page 1 of 2) Latitude 5.10227, Longitude -1.28471 END DATE: 15th February, 20 Depth Sample Soll/Rock Description SPT Test Rotary Core drilling Consistency Grading Umits Umits Openation SPT Test Rotary Core drilling Consistency Grading 0.0 Units Openation SPT Test Rotary Core drilling Consistency Grading 0.0 Units Openation SPT Test Rotary Core drilling Consistency Grading 0.0 Units Openation SPT Test Rotary Core drilling Consistency Grading 0.0 Units Units Openation SPT Test Rotary Core drilling Consistency Grading 0.0 Units Units Openation SPT Test Rotary Core drilling Rotary Core drilling Rotary	2021 21 (%) s	
Borehole No.: 1 (Page 1 of 2) Latitude 5.10227, Longitude -1.28471 END DATE : 16th February, 20 Borghole No.: 1 (Page 1 of 2) Latitude 5.10227, Longitude -1.28471 END DATE : 16th February, 20 Borghole No.: 1 (Page 1 of 2) Soli/Rock Description SPT Test Rotary Core drilling Consistency Grading (m) (i) (i) <t< td=""><td>21 (%) s</td></t<>	21 (%) s	
Sample (m) Sample (i) Sample Soli/Rock Description SPT Test (ii) Rotary Core drilling Consistency (iii) Grading (m) (i) Type	es (%) [] [] [] [] [] [] [] [] [] [] [] [] []	
Depth Sample Soil/Rock Description SPT Test Rotary Core drilling Consistency Limits Grading (m) (i) Type	es (%) 5 (%)	
Type Soil/Rock Description U U U U Limits U (m) Up Type Type Image: Soil/Rock Description	es (%) 5 (%)	
N. N.<	es (%) S (%)	
No No<	les (%) S (%)	
Bin Image: second	les (%) S (%)	
No. No. <td>es (%) S (%)</td>	es (%) S (%)	
N N	les (%) S (%)	
0.0 Image: second	8 0	
0.1 Loose blackish SAND(Topsoil) 0.2	E K	
0.3		
0.4		
0.6 ds1 Loss yellowish brown fine to medium grained 0.7 ds1 Loss yellowish brown fine to medium grained 0.8 SAND 4.5 13 10 3 3 70 1 SPT1 N3 10 1 10 <		
0.7 ds1 Loose yellowish prowinine to medium grained 4.5 13 10 3 3 70 0.8 SAND SAND Image: Sand set of the set o	07 0	
0.9 M3 SPT1 SPT1 M3 150 M3 150 M3 150 M3 M3 150 M3	27 0	
1.1 1.1		
112		
1.4		
1.6 ds2 1.6 ds2 1.8 1		
1.7	44 12	
19 SPT2 SPT2 N=6 400 I I I I I 2.1 I I I I I I I I 2.2 I I I I I I I I 2.3 I Firm to stiff mottled yellow, green, grey, white, brownfine to medium grained clayey SAND I I I I I 2.6 I I I I I I I I 2.6 I I I I I I I 2.7 I I I I I I I 2.8 I I I I I I I 2.8 I I I I I I I 2.9 I I I I I I I 3.1 I I I I I I I 3.2 I I I I I I I		
2.1 0.1.1 <t< td=""><td></td></t<>		
2.2		
2.4 brown fine to medium grained clayey SAND iii fooketsof gravel		
2.6 1<		
2.7 2.8 1 <td></td>		
2.9		
3.4		
3.6 ds3 Medium dense to dense mottled red, brown, 16.2 38 12 26 57 25	18 18	
3.7 yellow, green, grey saluy, clayey Grov VEL		
3.9 N=14 225		
4.2		
4.4 brown, dark brown clayey SAND 4.5 Image: Constraint of the second s		
4.8		
4.9 N=16 380 N=16 10 N		
LEGEND Notes Notes		
ds-disturbedsample LL-LiquidLimit ▼ GroundWater level Ref usal recorded at 7m		
Sector decompto PI - Plasticity Index		
nmo - natural moisture content DFS- Differential Free Swell DFS- Differential Free Swell		

	BOREHOLE LOG																			
GEOT	GEOTECHNICAL INVESTIGATION FOR ACECOR BUILDING PROJECT AT UNIVERSITY OF CAPE COAST																			
CLIEN	T: FAS	CONSU	LT LIMITED																	
BORIN	GMET	HOD: PE	RCUSSION										LOGGED BY: E Koranteng							
Hole D)iam et e	er: 150n	nm					_		_			START DATE : 15th February. 2021							
Boreh	ole No	· 1 (Pac	ne 2 of 2)	Latitude 5.10	227 10	naitud	e -1 3	2847 [,]	1				END DATE : 16th February 2021							
			jo _ 0: _,	Lundo 0.10		Ingitud		_0 11												
Depth		Sample	Coll/D	aak Deserintis			SPT	Test	Rota	ry Co	ore dr	illing		Cor	nsiste	ncy	C	Grading		
(m)	Ê	Туре	3011/ K	OCK Descriptio								1			Limits					
	ion (
	Eleval							(mu			y (%)		(%							
	med							/ery (i		(%)	cover		tent ((%)	(%	(%				
	Assu							Recov	(E)	turn	e Re		Cont	mit (°	mit (,) xəp	(_	
							alue	erial F	e Rur	er Re		(%) (sture	id Li	tic Li	tic In	/el (%	(%) p	(%) sa	(%)
5.0							>-z	Mat	Cor	Wat	Tota	RQI	Moi	Liqu	Plas	Plas	Grav	San	Fine	DFS
5.1 5.2																				
5.3																				
5.5		ds4	Stiff to hard mottle	ed yellow, green, gre	y,light								22.6	40	16	24	0	40	60	37
5.6 5.7			brown, dark brown	clayey SAND																
5.8																				
6		SPT6					N=22	390												
6.1 6.2																				
6.3																				
6.5																				
6.6 6.7																				
6.8 6.9																				
7		SPT7					N=62	260												
7.1																				
7.3 7.4		ds5	Dense to very dens	e mottled yellow, gre	een,								16.7	29	17	12	0	69	31	0
7.5			grey, black, brown	highly weathered																
7.6			SANDSTONE																	
7.8 7.9																				
8		SPT8					N=60	180												
8.2																				
8.3 8.4																				
8.5																				
8.7		0.077					NI-00	_												
8.8 8.9		SP 19			End of hole		N=60	0												
9 9.1																				
9.2																				
9.3 9.4																				
9.5 9.6																				
9.7																				
9.8 9.9																				
10 LEGEND													<u>Not</u> es							
ds-disturbe	ed sampl e			LL-Liquid Limit			T	Gr ound \	Water lev	rel			Refusal	r ecor dec	lat 7m					
ud-undistur	bed sample	Turk C.		PL - Plastic Limit																
SPT - Standard Penetration Test Sample PI - P nmc - natural moisture content DES-				PI - Plasticity Index	e Swell															
					1					_			_			_				

	BOREHOLE LOG																			
GEO	FECHN		INVESTIG	ATION FOR		COR	BUIL	DIN	IG P	RO	JEC	ΓΑΤ	UNI	VEF	RSIT	ΥO	F CA	PE C	OAST	Г
CLIEN	T: FAS	CONSU	LT LIMITED																	
BORIN	GMET	HOD: PE	RCUSSION										LOGGED BY: E Koranteng							
Hole D	Diamete	er: 150n	n m										STA	RT C	ATE	: 18t	h Feb	ruarv	2021	
Boreh		· 2 (Par	1 of 2)	Latituda 5.10	187 1 0							END DATE: 10th Enhrung 2024								
Doren		z (i ag		Latitude 5. Te	/107, EC	Igituu	L = 1.2		, 							5111	ebru	ur y, 20	,21	
Depth		Sample					SPT	Test	Rota	ry C c	ore dr	illing		Coi	nsiste	ncy	C	Grading	ı	
(m)	Ê	Type	Soil/Ro	ock Descriptio	n							1			Limits					
. /	ı) uoj																			
	levat							Ê			(%)		()							
	EdE							л) (п		(%	very		nt (%	_	_	~				
	unss							COVE	E)) ur	Rec		onte	it (%	it (%	%) xa				
	۲						en	ial Re	Run	Retu	Core	(%)	ureO	d Lim	c Lim	c Inde	(%) I	(%)	(%)	(%)
0.0							N-Val	Mater	Core	Vatei	Fotal	go	Moist	Liqui	Plasti	Plasti	Grave	Sand	Fines	DFS (
0.0									-	_	·	_								
0.2			Loose mottled blac clayey SAND	k, yellow, green, gre	y															
0.4																				
0.6																				
0.7		ds1											17.2	18	8	10	3	37	60	36
0.9		ODT4	Soft mottled vellov				N=2	0												
1.1		SFII	sandy CLAY with po	ocketsof gravel			11-2	Ū												
1.2 1.3		•																		
1.4																				
1.5																				
1.7 1.8																				
1.9		0.0.70					N-0	450												
2		5P12					11-0	430												
2.2 2.3																				
2.4																				
2.5																				
2.7 2.8		ds2											17.8	35	12	23	0	62	38	36
2.9		0.070					NI-9	450												
3.1		5P13					11-0	430												
3.2 3.3			Stiff to hard mottle	ed yellow, green, gre	y		-													
3.4			brown, sandy CLAY	with pockets of grav	rel															
3.5																				
3.7 3.8																				
3.9		0.074					N-20	340												
4.1		5P14					11-20	340												
4.2 4.3							<u> </u>													
4.4																				
4.5																				
4.7 4.8																				
4.9		0.07-					NI-02	400												
5 LEGEND		SP [5			End of hole		N=22	400					Notes							
ds - distur b	ed sampl e			LL-Liquid Limit			•	Gr ound \	Water I ev	el			Refusal	r ecor dec	lat 8.7m					
ud-undistu	rbedsample ard Penetrotic	on Test Samela		PL - Plastic Limit																
nmc-natura	al moisture con	ntent		DFS-Differential Free	e Swel I						-			-						

	BOREHOLE LOG																			
GEOT	FECHN		INVESTIG	ATION FOF		COR	BUIL	.DIN	IG P	RO	JEC	ΓΑΤ	UNI	VEF	RSIT	ΥO	F CA	PE C	OAST	Г
CLIEN	T: FAS	CONSU	LT LIMITED																	
BORIN	GMET	HOD: PE	RCUSSION							-			LOG	GED	BY:	E Koi	rantei	ng		
Hole D	Diamete	er: 150n	nm			START DAT						ATE	: 18t	h Feb	ruary	2021				
Boreh	ole No	: 2 (Pac	ie 2 of 2)	Latitude 5 10	Latitude 5.10187, Longitude -1.28440 END DATE : 19th F								February, 2021							
			,• _ •,															, ,		
Depth		Sample	Soil/P	ock Descriptio	n		SPT	Test	Rota	ry C c	re dr	illing	ng Consistency Grading					J		
(m)	Ê	Туре	3011/10	Jek Descriptio																
	tion																			
	Eleva							(uu			у (%		(%)							
	med							very ((%)	COVEI		tent ((%	(%	(%				
	Assu							Reco	(m) u	eturn	re Re		Con	mit (imit () xəp	()	_		
							alue	erial	eRu	ter Re	al Co	(%) O	sture	uid L.	stic Li	stic In	vel (%	%) p	%) se	(%) Ş
5.0							2 Z	Mat	Col	Wa	Tot	RQ	ω	Liq	Pla	Pla	Gra	San	Ë	DF
5.1 5.2			Stiff to hard mottle	ed yellow, green, gre	y															
5.3			brown, sandy CLAY	with pockets of grav	rel															
5.5																				
5.6 5.7																				
5.8																				
6		SPT6					N=22	380												
6.1 6.2																				
6.3																				
6.5																				
6.6 6.7																				
6.8																				
7		SPT7	Mediumdensetove	ery dense mottled ye	llow,		N=48	340												
7.1 7.2			green, grey, black, SANDSTONE	brown highly weathe	ered															
7.3																				
7.5																				
7.6 7.7		ds3											17.7	29	18	11	0	72	28	0
7.8																				
8		SPT8					N=48	370												
8.1 8.2																				
8.3 8.4																				
8.5																				
8.6 8.7																				
8.8 8.9		SPT9			End of hole		N=50	30												
9																				
9.1 9.2																				
9.3 9.4																				
9.5																				
9.6 9.7																				
9.8 9.9																				
10																				
LEGEND ds-disturb	ed samol e			LL-Liquid Limit	End of hole		•	Ground	Waterla	el			Notes Refusal	r ecor der	lat 8.7m					
ud - undistu	rbedsample			PL - Plastic Limit			•	Ground	valef 16V				usdi							
SPT - Stand	SPT - Standard Penetration Test Sample			PI - Plasticity Index																
nmc - natur a	al moisture con	ntent		DFS-Differential Fre	e Swel I															

	BOREHOLE LOG																			
GEO	FECHN		INVESTIG	ATION FOR	R ACEC	OR BL	JIL	DIN	IG P	RO	JEC	Г АТ	UNI	VEF	RSIT	ΥO	F CA	PE C	OAS	Г
CLIEN	T: FAS	CONSU	LT LIMITED																	
BORIN	GMET	HOD: PE	RCUSSION										LOGGED BY: E Koranteng							
Hole D	Diamete	er: 150n	nm										STA	RT C	ATE	: 16t	h Feb	ruary	2021	
Boreh	ole No	.: 3 (Pac	ue 1 of 2)	Latitude 5 10)191 I or	naitude -	12	8489	9				END	DAT	E: 1	7th F	ebru	arv. 2()21	
			,,															, ,		
Depth		Sample	Sail/B	aak Degevintig		SI	рт т	ſest	Rota	ry C c	ore dr	illing		Coi	nsiste	ncy	(Grading	I	
(m)	Ê	Туре	3011/ K	Dek Descriptio	, n										Limits					
	ion (
	Eleval							(mn			y (%)		(%							
	med							ery (I		(%)	COVER		ent ((9	(%	(%				
	Assu							Recov	(L)	turn	e Re(Cont	mit (°	mit (9	,) xəp	(
	-						alue	erial F	e Rur	er Re		(%) (sture	id Li	tic Li	tic In	/el (%	(%) p	(%) si	(%)
0.0							ż	Mat	Cor	Wat	Tota	RQI	Moi	Liqu	Plas	Plas	Grav	San	Fine	DFS
0.1																				
0.3																				
0.4																				
0.6		ds1	Loose mpttled blac	k, brown, yellow, gre	een								12.0	N	on-Plas	tic	1	62	37	0
0.8			fine to medium gra	ined clayey SAND																
1		SPT1				N	1=2	0												
1.1 1.2							_													
1.3																				
1.4		ds2											10.9	42	20	22	8	71	21	79
1.6 1.7		•																		
1.8 1.9						-														
2		SPT2				N	1=6	450												
2.1																				
2.3 2.4																				
2.5		ds2											17.0	41	12	29	0	55	45	24
2.0			Stiff to hard mottle	ed yellow, green, gre	ey 🛛															
2.8 2.9			brown, clayey SAN	Dwithpocketsofgr	avel	-	_													
3		SPT3				N	1=7	410												
3.2																				
3.3 3.4						-														
3.5 3.6																				
3.7																				
3.8 3.9																				
4		SPT4				N	=16	450												
4.2																				
4.3																				
4.5 4.6																				
4.7		1																		
4.0																				
5		SPT5			End of hole	N	=25	420			L		<u>Note</u> s							
ds - distur b	ed sampl e			LL-Liquid Limit			•	Gr ound \	Water lev	el			Refusal	r ecor dec	lat 7m					
ud-undistu	bed sample	Tarto (PL - Plastic Limit			_													
sPT-Stand	ard Penetratio	on Test Sample		PI - Plasticity Index	e Swell		\rightarrow													
		 I								_	-			_		_				

	BOREHOLE LOG																			
GEOT	GEOTECHNICAL INVESTIGATION FOR ACECOR BUILDING PROJECT AT UNIVERSITY OF CAPE COAST																			
CLIEN	T: FAS	CONSU																		
BORIN	GMET	HOD: PE	RCUSSION				_				-		LOG	GED	BY:	E Koi	ranter	ng		
Hole D	Diamete	er: 150n	ו m				_						START DATE: 16th February, 2021							
Boreh	ole No	· 3 (Pag	e 2 of 2)	Latitude 5.10	191 I.o	naitude	-12	8489	2				FND	ΠΔΤ	F·1	7th F	ebru	arv 2(121	
Boren						Ingitade	- 1.2					l						ur y, 20		
Depth		Sample				:	SPT	Test	Rota	ry C c	re dr	illing		Cor	nsiste	ncy	C	Grading	1	
(m)	Ê	Туре	Soil/Ro	ock Descriptio	n										Limits					
	i) noi																			
	Elevat							(mu			(%)/		(%							
	ned E							ery (n		(%)	Covery		ent (°	(9	()	(%)				
	vssur							ecov	(E) un	e Rec		Cont	nit (%	nit (%	ex (%	-			
	•						anl	rial R	Run	er Ret	Con	(%)	ture	id Lin	ic Lin	ic Inc	el (%)	(%)	s (%)	(%)
5.0							N-Va	Mate	Core	Wate	Tota	RQD	Mois	Liqu	Plast	Plast	Grav	Sanc	Fine	DFS
5.1																				
5.2																				
5.4 5.5						-														
5.6			Stiff to bord mottle	dvellew green gre																
5.7			brown, clayey SAN	Dwithpocketsofgra	avel															
5.9 6		SPT6				-	N=33	370												
6.1		0.10																		
6.2 6.3						-														
6.4																				
6.6																				
6.7 6.8																				
6.9 7		SPT7					N=55	270												
7.1		0																		
7.2																				
7.4		de3	Verv dense mottled	vellow green grev	black								15.3	24	18	6	0	73	27	36
7.6		435	brown highly weat h	ered SANDSTONE									10.0		.0		Ŭ			
7.7 7.8																				
7.9		SDT9					N=60	270												
8.1		3F10					N-00	210												
8.2 8.3																				
8.4																				
8.6																				
8.7 8.8																				
8.9		SPTO					N=60	240												
9.1		3619			End of hole		11-00	240												
9.2 9.3																				
9.4																				
9.5 9.6																				
9.7 9.8																				
9.9																				
					End of hole								Notes							
ds-disturb	ed sampl e			LL-Liquid Limit			V	Gr ound \	Nater lev	el			Refusal	r ecor dec	lat 7m					
ud-undistur	rbed sample	n Test Samolo		PL - Plastic Limit																
mmc-natural moisture content DFS-Differential Free Swell																				

Analysis Results

Water Research Institute, Environmental Chemistry Division

CSIR Premises, Airport Res. Area

P. O. Box M. 32

Accre, Ghana

Phone: (+233-21) 775351/52 Fax: (+233-21) 777170 E-mail: info@csir-water.com

	1			
MAC		3/21	Sulphate (mg/l)	928
Company Name: BONI	Contact Last Name:	Analysis stop date: 01/0	Chloride (mg/l)	8730
			pH (pH Units)	5.10
Project: ACECOR Building	Client Name: UCC	Analysis start date: 26/02/21	SAMPLE ID	BH3

Dr. Isaac O.A. Hodgson (Head, ECSED) Approved by

